

Treatment Policy

Rüdiger Hehlmann

Historic Development of CML Therapy

Rationale for CML "guidelines"

- TKIs: paradigm shift in CML
- 1998 ASH guideline on CML Tx does not cover TKIs
- 2006
 - too early for evidence-based analysis of IM effects
 - Not too early to review available data

ELN review of CML therapy

- Review panel: 19 expert members of ELN
- Scope
 - Review of literature after 1998
 - Panel meetings
 - Discussion limited to early chronic phase (ECP)
 - More advanced phases more difficult to generalize
 - Importance of 1st line Tx strategy
- Requirements
 - Definition of phase, remission
 - Definition of risk of progression / death

Summary of ELN expert panel "guidelines"

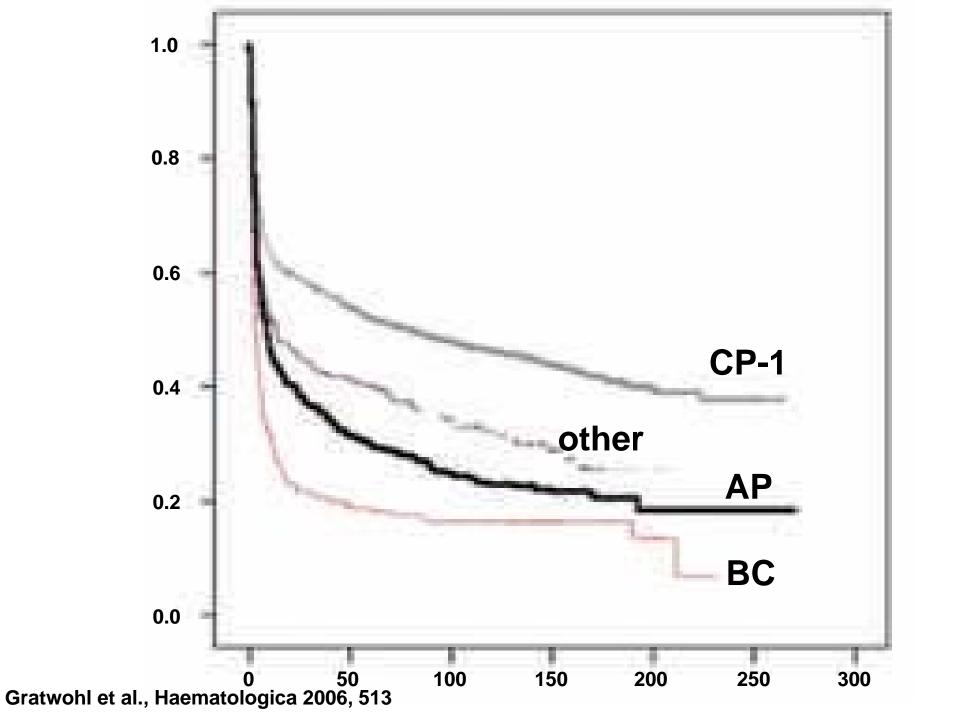
Confirm value in CML Tx of

- IM 400 mg/d
- Allogeneic SCT
- Recommend
 - initial Tx decision to be based on established risk factors
 - For patients initially on IM
 - with Tx failure: increase dose or change Tx
 - with suboptimal response: consider increase in dose or change of Tx
 - Regular monitoring at expert centers

Review findings

Summary and update of recombinant IFNα

- rIFNa superior to conventional CT
- rIFNa + ara-C vs. rIFNa: higher CR, equal OS
- Low dose (3 MIU 3x/wk) as effective as high dose (5 MIU/m2/d) but better tolerated
- 9-10-year OS for rIFNα: 27%-53%
- 10-year OS for complete cytogenetic responders (n=317)
 - 90% (low Sokal risk)
 - 40% (high Sokal risk)


Summary and update of allogeneic SCT (1/2)

- allo SCT in first CP
 - 10-yr OS 60%, 10-yr EFS 50%
 - 10-yr OS 47%, 15-yr EFS 52%
 - 10-yr OS 63%, 15-yr EFS 65% (meta-analysis, n=316)
- CIBMTR (n=4513)
 - 18-yr OS 50% (first CP), 37% (others)
 - 18-yr cum. incidence of relapse 25% (CP), 37% (others)

• EBMT (n=2628)

- 20-yr OS 34%
 - 41% for first CP, HLA-identical sibling
 - 49% for EBMT risk score 0-1

Survival Probability of Transplantation

Months

Summary and update of allogeneic SCT (2/2)

- EBMT (n=3142, any phase, any donor):
 - OS 72%-11% depending on risk (70%-25% for ECP)
- Improved results today due to better
 - allele matching
 - management of infections and supportive care
 - Immunosuppression
- PB stem cells not better than BM stem cells
- RIC-alloHSCT under evaluation; may permit SCT also in older patients

Summary and update of autologous SCT

- Treatment intensification with autoHSCT to achieve more remissions and prolong OS
- Meta-analysis of 6 randomized studies did not show advantage for autoHSCT

Summary and update of Imatinib (ECP)

- IM superior to rIFNa and LDAC (IRIS)
- 2 independent retrospective analyses con-firmed superiority to other non-transplant Tx
- Current survival outcome in ECP better than for any other reported Tx
 - Annual rate of progression to AP/BC during 1st 4 years of Tx fairly constant (1.5%, 2.8%, 1.6%, 0.9%)

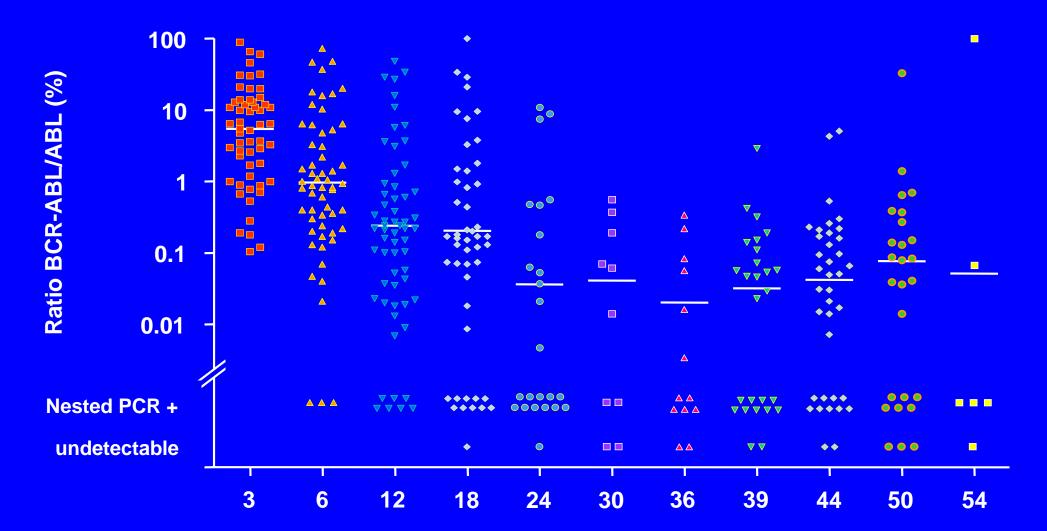
Summary Treatment Criteria

- Phase of disease
- Risk profile at diagnosis
- Transplantation risk
- Time to remission, remission quality
- Mode of resistance (Clonal evolution, IC₅₀ of mutants, NB: P-loop-mutants
 [aa 248-256] and T315I)
 - Additional chromosomal abnormalities?

Principle of CML-Management

Weigh

- disease risk (phase, risk profile)
- against therapy risk (adverse effects, transplantation risk)
- Consider response


The Importance of Response Monitoring

Hematologic (q 2 weeks until CHR)
Cytogenetic (q 6 months until CCR)
Molecular (q 3 months after CCR)

Reduction in BCR-ABL transcripts on IM therapy

- High frequency of CCR on IM Tx calls for measurement of MRD
- 3-log reduction from a standard baseline (MMoIR) in 50% of patients in ECP (70% of pts in CCR)
- BCR-ABL transcripts undetectable in 4%-34%
- Rate of further reduction in BCR-ABL decreases over time γ stem cells less sensitive to IM?
- Cure uncertain γ Tx not to be discontinued

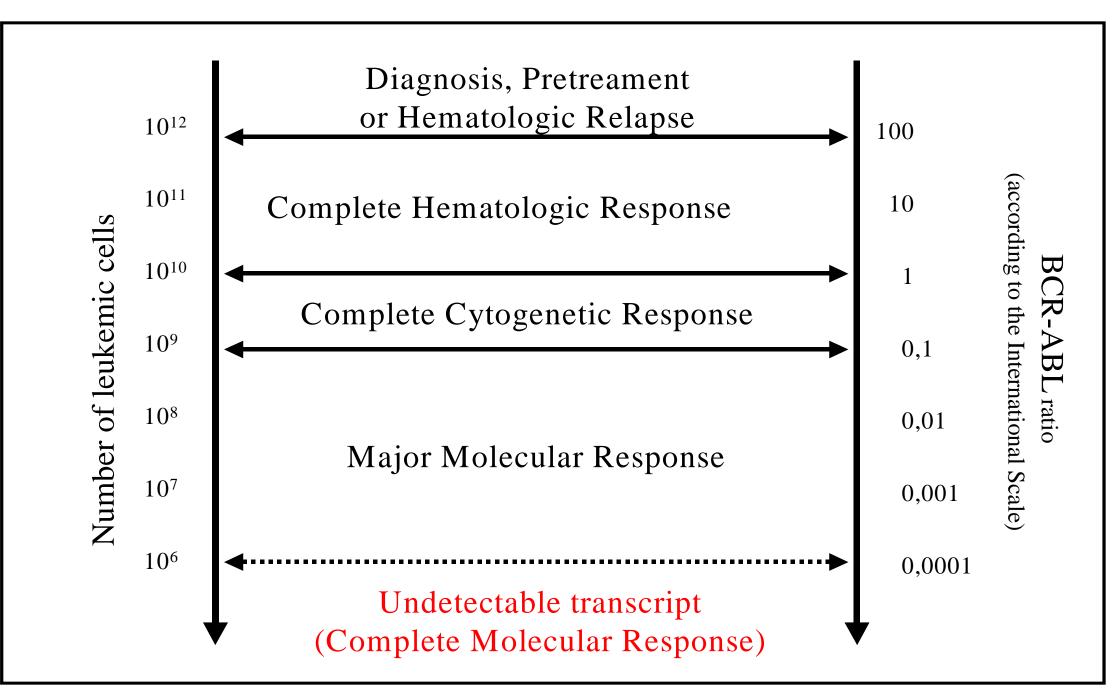
Imatinib: BCR-ABL Transcript Levels After CCR in Chronic Phase

Time after start of Imatinib treatment (months)

Müller et al., Leukemia 2003, update Hochhaus

Relevance of Molecular Monitoring (RQ-PCR)

 Only method to measure residual disease after CCR


 The degree of transcript reduction has prognostic relevance (Hughes et al., NEJM 2003)

Molecular Response Definition

 Complete Transcripts undetectable
 Major BCR-ABL/ABL ratio ≤0.1

Check every 3 months, search for mutation in case of failure, suboptimal response or rising transcript level

Relationship of Response to Tumor Load

Initial Treatment Options CP

- Standard dose imatinib (400 mg)
 Alternatives:
- Interferon combined with HU and/or low dose AraC (ECP, standard risk only)
- High dose imatinib (experimental)
- Allografting (on patients' request)

Criteria for Alternative Treatments

Imatinib failure
Suboptimal response
Clonal evolution to AP/BC
Resistant mutant

Imatinib IC₅₀ for BCR-ABL Mutants

Mutant	Biochemical	Cellular
Wild-type	300	260-500
M244V	380	2000
L248V	n.a.	1500
G250E	1000	1350-3900
Q252H	n.a.	1200-2800
Y253F	>5000	3475
Y253H*	>5000	>10000
E255K	2800	4400-8400
E255V	>5000	>5000
D276G	n.a.	1500
T277A	n.a.	n.a.
F311L	775	480
F311I	n.a.	n.a.
T315I*	>5000	>10000
F317L*	900	810-1500
M343T	n.a.	n.a.
M351T	820	930
M351V	n.a.	n.a.
E355D	n.a.	n.a.
E355G	n.a.	400
F359V*	4700	1200
V379I	800	1630
A380T*	340	2450
F382L	n.a.	n.a.
L387M	1500	1000
L387F	n.a.	1100
H396P	340-800	850-4200
H396R	1950	1750
S417Y	n.a.	n.a.
E459K	n.a.	n.a.
F486S	1230	2800

Alternative Treatment Options

- Increase of imatinib dose (600-800 mg)
- New tyrosine kinase inhibitors (dasatinib, nilotinib)
- HU, AraC, (IFN)
- Combination chemotherapy
- Allografting

IM dose issues

- 600 mg/d more effective than 400 mg/d in AP/BC
- 800 mg/d can benefit some subgroups of patients
- Unclear whether higher doses will increase overall number of CCR and MMolR
- Prospective studies on high-dose IM in progress
- Lower doses not explored:
 - subtherapeutic doses may lead to resistance
 - 400 mg are well tolerated

Combination Tx

• IM 400 mg/d + pegylated rIFN α 2b $(50-150\mu g/wk)$ (n=77) - Limited compliance, high discontinuation rate with IFN IM 400 mg/d + LDAC (n=30) - CCR 70% at 1 year, grade 3-4 hematological toxicity 53% Ongoing prospective randomized studies - IM alone vs IM + rIFN α / LDAC / HD AC Synergies with IM or overcoming of IM resistance seen with several drugs (preliminary results)

IM and SCT

- IM prior to alloHSCT did not increase TRM or morbidity
- IM can control leukemia in patients relapsing after alloHSCT, molecular negativity 15/18 cases
- Synergy of IM with donor lymphocyte infusion suggested

Resistance and mutations

Multifactorial

- BCR-ABL mutations of kinase domain (42%-90%)
- BCR-ABL amplification or overexpression
- clonal evolution
- decreased IM bioavailability or cell exposure
- Mutant subclones may not be consistently associated with subsequent relapse
- Ph+ primitive cells can harbour BCR-ABL mutations prior to IM exposure and can develop rapidly under IM pressure
- Some mutations can be overcome by dose increase or are functionally irrelevant γ interpret within clinical context!

Additional chromosome abnormalities (ACA) in Ph+ cells and other chromosome abormalities in Ph- cells (OCA)

- ACA (clonal evolution) rare in ECP but more frequent with disease progression
- Negative relationship of ACA with IM response
- OCA in app. 5% of pts in IM-induced CCR
- Many of these in LCP, with IFN pretreatment
 - Trisomy 8 ± other abnormalities
 - del7
 - Association with MDS (particularly in del7 and/or other complex abnormalities)

OCA may be transient; often does not end CCR

Failure and suboptimal response: operational definition (ECP CML on IM 400 mg/d)

Time	Failure	Subopt Resp	Warnings
Dx	-	-	High risk Del9q+ ACA in Ph+ cells
3 mos	No HR	< CHR	
6 mos	< CHR No CR	< PCR	
12 mos	< PCR	< CCR	< MMoIR
18 mos	< CCR	< MMoIR	
Anytime	Loss of CHR Loss of CCR Mutation (IM-insensit.)	ACA in Ph+ cells Loss of MMoIR Mutation (IM-insensit.)	Any # transcr level OCA in Ph- cells

Failure and suboptimal response ('anytime' events)

Time	Failure	Subopt Resp	Warnings
Anytime	Loss of CHR ¹ Loss of CCR ² Mutation ³	ACA in Ph+ cells ⁴ Loss of MMoIR ⁴ Mutation ⁵	Any # transcr level OCA in Ph- cells

1) confirmed on 2 occasions, unless progression to AP/BC

- 2) confirmed on 2 occasions, unless CHR loss or progr. to AP/BC
- 3) High level of insensitivity to IM
- 4) confirmed on 2 occasions, unless loss of CHR or CCR
- 5) Low level of insensitivity to IM

Failure and suboptimal response due to mutation

- Mutant subclones may not be consistently associated with subsequent relapse
- Mutations
 - can be overcome by dose increase
 - can be functionally irrelevant
- γ interpret within clinical context!

Treatment policy: recommendations

ECP initial standard Tx

- Standard dose imatinib, 400 mg/d
- Alternatives
 IFN + HU and/or low-dose Ara-C (standard risk only)
 - High dose imatinib (experimental)
 - Allografting (on patients' request)

Preferred Tx in high-risk disease, low transplantation risk

- Trial with IM first
- Discuss choice between IM and alloHSCT with patient
- Little reason to deny IM trial, as early response to IM can reinforce or weaken indication for alloHSCT

Preferred Tx other than IM 400 mg/d

Intolerance	SCT or IFN ± LD Ara-C vs.	Shared decision-making
Toxicity	New agents	Charce accision making
Failure	SCT or IM 600 or 800 mg/d	Check compliance! Rule out highly resistant mutation
Suboptimal response	IM 600 or 800 mg/d (SCT if low SCT risk and high disease risk)	
'Warnings'	Continue IM 400 mg/d	Observe! Check compliance!

Treatment Choices

- In case of intolerance or toxicity:
- Allografting
- IFN<u>+</u> LD AraC
- investigational agents (shared decision making)

Treatment Choices In case of failure/resistance (check compliance!, rule out highly resistant mutation) Trial with imatinib 600 or 800 mg (if mildly resistant mutation) Trial with dasatinib or nilotinib (if available) Allografting

Hydroxyurea

Imatinib IC₅₀ for BCR-ABL Mutants

Mutant	Biochemical	Cellular
Wild-type	300	260-500
M244V	380	2000
L248V	n.a.	1500
G250E	1000	1350-3900
Q252H	n.a.	1200-2800
Y253F	>5000	3475
Y253H*	>5000	>10000
E255K	2800	4400-8400
E255V	>5000	>5000
D276G	n.a.	1500
T277A	n.a.	n.a.
F311L	775	480
F311I	n.a.	n.a.
T315I*	>5000	>10000
F317L*	900	810-1500
M343T	n.a.	n.a.
M351T	820	930
M351V	n.a.	n.a.
E355D	n.a.	n.a.
E355G	n.a.	400
F359V*	4700	1200
V379I	800	1630
A380T*	340	2450
F382L	n.a.	n.a.
L387M	1500	1000
L387F	n.a.	1100
H396P	340-800	850-4200
H396R	1950	1750
S417Y	n.a.	n.a.
E459K	n.a.	n.a.
F486S	1230	2800

Treatment Choices

- In case of suboptimal response:
- Imatinib 600 or 800 mg
- Allografting, if low transplantation risk and high disease risk

Treatment Choices

In case of warnings:
Continue imatinib 400 mg
Observe
Check compliance!

Other scenarios

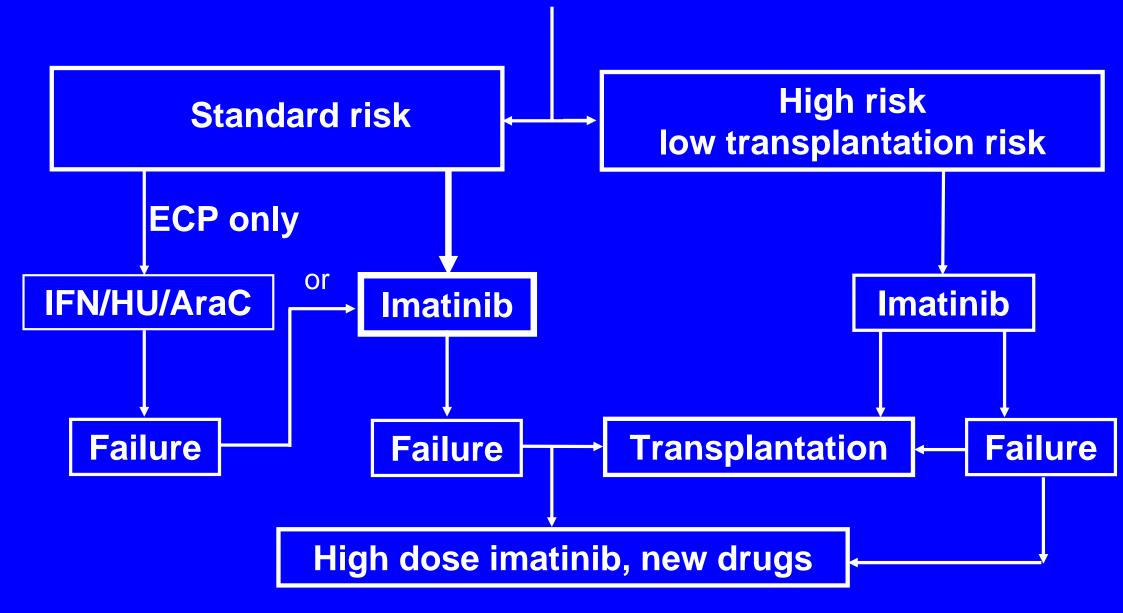
 Patient requires IM dose reduction or frequent interruption

- Advise pt to adhere to 400 mg/d as far as possible
- Provide appropriate supportive care
- Monitor response frequently
- Monitor IM blood level in case of failure, co-medication of drugs interfering with Cyt. p450, or drug-related SAE
- Pt with no other Tx options
 Continue IM if CHR maintained; otherwise resort to HU

Summary and update of Imatinib (late CP, AP, BC)

IM in late CP

- CCR 41%-64%
- 5-yr PFS 69%, 4-yr OS 86%-88%
- Better OS than historical controls even when no CCR
- IM in AP
 - Best results at 600 mg/d: CHR 37%, CCR 19%, 3-yr PFS 40%
- IM in BC
 - CHR ca. 25%, some CCR, short PFS (<10 ms median), 3-yr OS 7%


Tx in initial AP and BC

Treatment initially with IM

 Trial of other TKI (based on mutational analysis)

Then proceed to allografting

CML in chronic phase 2006

EVOLVING CONCEPTS IN THE MANAGEMENT OF CHRONIC MYELOID LEUKEMIA

RECOMMENDATIONS FROM AN EXPERT PANEL ON BEHALF OF THE EUROPEAN LEUKEMIANET