European LeukemiaNet
Developing stratified diagnostic and treatment approaches

Susanne Saußele
Scientific Network Manager

Tuesday, April 02, 2012
Chicago
(Update May 08, 2013)
Content

Short introduction on ELN

Overview on Guidelines

Impact on Health Care
194 centers in 39 countries
- 114 national leukemia study groups
- 109 interdisciplinary partner groups
- 1000 physicians and scientists
- Caring for ten thousands of patients
European LeukemiaNet

concerns: all leukemias with all interdisciplinary partner groups

Interdisciplinary Integration

WP 10-12

basic scientists

exchange & integration at all research activities & scientific meetings

WP 4-9

clinicians

WP 14, 15

pharmaceutical industry biotech companies small & medium enterprises

WP 13

Management Recommendations in CML

- One of the 50 most cited papers of JCO
- 20,000 pocket cards distributed
Improvement of survival of CML by therapy
1983 – 2011

German CML Study Group

Year after diagnosis

Survival propbability

n = 3615

Imatinib, 2002 – 2011 (CML IV)
5-year survival 90%
8-year survival 88%

IFN or SCT, 1997 – 2003
(CML IIIA) 5-year survival 71%

IFN or SCT, 1995 – 2001 (CML III)
5-year survival 63%

IFN, 1986 – 1994
5-year survival 53%

Hydroxyurea, 1983 – 1994, 5 yr surv. 44%

Busulfan, 1983 – 1994 5-year survival 38%
BCR-ABL kinase domain mutation analysis in CML patients treated with TKI: recommendations from an expert panel of ELN

Multicentre validation of a reproducible flow cytometric score for the diagnosis of low-risk MDS

This score may help establish MDS diagnosis especially when morphology and cytogenetics are indeterminate

Table 3. Calculation of the flow cytometric score (FCM-score) for the diagnosis of low-risk MDS.

<table>
<thead>
<tr>
<th>Cytometric Parameter</th>
<th>Cut-off values</th>
<th>Regression coefficient</th>
<th>Variable weighted score #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myeloblast-related cluster size (%)*</td>
<td>≥2</td>
<td>2.59</td>
<td>1</td>
</tr>
<tr>
<td>B-progenitor-related cluster size (%)**</td>
<td>≤5</td>
<td>1.87</td>
<td>1</td>
</tr>
<tr>
<td>Lympocytes to myeloblasts CD45 ratio</td>
<td>≤4 or ≥7.5</td>
<td>1.76</td>
<td>1</td>
</tr>
<tr>
<td>Granulocytes to lymphocytes SSC ratio</td>
<td>≤6</td>
<td>2.31</td>
<td>1</td>
</tr>
</tbody>
</table>

* in all nucleated cells; ** in all CD34+ cells; # a diagnosis of MDS is formulated in presence of a FCM-score value ≥2.
Recommended minimal requirements to assess dysplasia in MDS by FC

<table>
<thead>
<tr>
<th>Bone marrow subset</th>
<th>Recommended analyses</th>
<th>Aberrancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immature myeloid and monocytic progenitors</td>
<td>Percentage of cells in nucleated cell fraction<sup>a</sup></td>
<td>Increased percentage</td>
</tr>
<tr>
<td></td>
<td>Expression of CD45</td>
<td>Lack of/decreased/increased</td>
</tr>
<tr>
<td></td>
<td>Expression of CD34</td>
<td>Lack of/decreased/increased</td>
</tr>
<tr>
<td></td>
<td>Expression of CD117</td>
<td>Homogenous under/overexpression</td>
</tr>
<tr>
<td></td>
<td>Expression of HLA-DR</td>
<td>Lack of/increased expression</td>
</tr>
<tr>
<td></td>
<td>Expression of CD13 and CD33</td>
<td>Lack of/decreased/increased</td>
</tr>
<tr>
<td></td>
<td>Asynchronous expression of CD11b, CD15</td>
<td>Presence of mature markers</td>
</tr>
<tr>
<td></td>
<td>Expression of CD5, CD7, CD19, CD56<sup>b</sup></td>
<td>Presence of lineage infidelity markers</td>
</tr>
<tr>
<td>Maturing neutrophils</td>
<td>Percentage of cells as ratio to lymphocytes</td>
<td>Decreased</td>
</tr>
<tr>
<td></td>
<td>SSC as ratio vs SSC of lymphocytes</td>
<td>Decreased</td>
</tr>
<tr>
<td></td>
<td>Relationship of CD13 and CD11b</td>
<td>Altered pattern<sup>f</sup></td>
</tr>
<tr>
<td></td>
<td>Relationship of CD13 and CD16</td>
<td>Altered pattern<sup>f</sup></td>
</tr>
<tr>
<td></td>
<td>Relationship of CD15 and CD10</td>
<td>Altered pattern<sup>f</sup>; for example, lack of CD10 on mature neutrophils</td>
</tr>
<tr>
<td>Monocytes</td>
<td>Percentage of cells</td>
<td>Decreased/increased</td>
</tr>
<tr>
<td></td>
<td>Distribution of maturation stages</td>
<td>Shift towards immature</td>
</tr>
<tr>
<td></td>
<td>Relationship of HLA-DR and CD11b</td>
<td>Altered pattern<sup>f</sup></td>
</tr>
<tr>
<td></td>
<td>Relationship of CD36 and CD14</td>
<td>Altered pattern<sup>f</sup></td>
</tr>
<tr>
<td></td>
<td>Expression of CD13 and CD33</td>
<td>(Homogenous) under/overexpression</td>
</tr>
<tr>
<td></td>
<td>Expression of CD56<sup>b</sup></td>
<td>Presence of lineage infidelity marker</td>
</tr>
<tr>
<td>Progenitor B cells</td>
<td>Enumeration as fraction of total CD34+ based on CD45/CD34/SSC in combination with CD10 or CD19</td>
<td>Decreased or absent</td>
</tr>
<tr>
<td>Erythroid compartment<sup>d</sup></td>
<td>Percentage of nucleated erythroid cells</td>
<td>Increased</td>
</tr>
<tr>
<td></td>
<td>Relationship CD71 and CD235a</td>
<td>Altered pattern<sup>f</sup></td>
</tr>
<tr>
<td></td>
<td>Expression of CD71</td>
<td>Decreased</td>
</tr>
<tr>
<td></td>
<td>Expression of CD36</td>
<td>Decreased</td>
</tr>
<tr>
<td></td>
<td>Percentage of CD117-positive precursors</td>
<td>Increased</td>
</tr>
</tbody>
</table>

^a Percentage of cells in nucleated cell fraction is measured using flow cytometry.

^b CD56 expression is assessed by flow cytometry.

^c Progenitor B cells are studied by analyzing the enumeration of B cells using flow cytometry.

^d Erythroid compartment data is collected by evaluating the percentage of nucleated erythroid cells.
AML Intergroup study - Overall survival (n = 3106)

Standard treatment arm, 5-year survival probability: 44.3 [37.7; 50.7]

Study A: 5-year survival probability: 41.4 [36.9; 45.8]
Study B: 5-year survival probability: 46.6 [41.1; 51.8]
Study C: 5-year survival probability: 47.5 [40.1; 54.6]
Study D: 5-year survival probability: 43.6 [39.6; 47.6]
Study E: 5-year survival probability: 46.4 [41.0; 51.7]

n = 3106 patients, 1542 events
Model for interconnecting AML registries

Automatized
Core Data Transfer

Population-based
Swedish Registry

Trial-based
AMLSG

Trial-based
AMLCG/SAL

Trial-based
HOVON/SAKK

Permitted
Data Access

Core-data Registry Tool

Population-based
Swedish Registry

Trial-based
AMLSG

Trial-based
AMLCG/SAL

Trial-based
HOVON/SAKK

Trial-based
MRC
Signatures and molecular markers in AML-NK

Marker
- NPM1+, CEBPAwt
- NPM1wt, CEBPA+
- NPM1wt, CEBPAwt

Ellipsoid
- NPM1 wild type
- NPM1 mutated
- CEBPA mutated

Kohlmann et al., Leukemia; 24(6):1216-20, 2010
Signatures and molecular markers in AML-NK

NPM1
- wild type
- mutated

CEBPA
- wild type
- mutated

cases: n=233
genes: n=461

Kohlmann et al., Leukemia; 24(6):1216-20, 2010 [29]
Complete study database uploaded to GEO repository

All CEL files available (n = 3248)

Individual rows of gene expression values:

GSE13204

114,888,960
Myelofibrosis

JAK Inhibition with Ruxolitinib versus Best Available Therapy - Changes in Spleen Volume

Figure 1. Changes in Spleen Volume and Spleen Length, According to Treatment Group. Panel A shows the percentage of patients in the efficacy-analysis population (all patients who underwent randomization and had both a baseline measurement and at least one subsequent assessment) who had a reduction in spleen volume of at least 35% from the baseline volume, as assessed by magnetic resonance imaging (MRI) or computed tomography (CT) at 48 weeks. Panel B shows the best percentage change from baseline in spleen volume, as assessed by MRI or CT, at any time within the first 48 weeks of treatment, among patients with a baseline assessment and at least one subsequent assessment. Data are shown for individual patients. Panel C shows the median length of time that a reduction of at least 35% in spleen volume, as assessed by MRI or CT, was maintained, among patients who were continuously receiving ruxolitinib. Patients were considered to have had a loss of response (event) if the spleen volume was no longer reduced by at least 35% from the baseline volume and was increased by 25% or more from the nadir. Data from patients who did not have an assessment subsequent to the baseline assessment, or who were still having a response at the time of cutoff of the data, were censored. Panel D shows the mean percentage change from baseline in palpable spleen length over time. I bars represent standard errors. BAT denotes best available therapy.
Critical concepts and management recommendations on Philadelphia-negative classical MPNs

Continuous ruxolitinib therapy, as compared with the best available therapy, was associated with marked and durable reductions in splenomegaly and disease-related symptoms, improvements in role functioning and quality of life, and modest toxic effects. An influence on overall survival has not yet been shown.

➢ With the introduction of JAK2 inhibitors study design with relevant endpoints is critical

➢ The WP works on outcome definition and related issues
Development of standardized approaches to reporting of MRD data using a reporting software package

- Differences in data analysis and presentation complicate multicenter clinical trials
- A highly flexible MRD-reporting software program was designed
- Data from various qPCR platforms can be imported, processed, and presented in a uniform manner. The software was tested in a two-step quality control study.
Summary

• The ELN combines 108 national leukemia study groups and 105 partner groups within 38 countries building a network of more than 1000 scientists and physicians

• 184 studies are listed within the ELTR of which 93 are active

• More than 40 guidelines and treatment recommendations have been published with major impact on diagnostics and treatment of leukemia patients

• Multiple projects of this network received additional funding (e.g. EUTOS, ESF support, COST program); in total >40 Mio Euro