Workpackage

Recommendations of Project 10: Diagnostics

Created by: Hellenbrecht (ELIC) , generated 2006/03/14, last changed: 2010/03/05

How and why minimal residual disease studies are necessary in leukemia: a review from WP10 and WP12 of the European LeukaemiaNet
Haematologica. 2009 Aug;94(8):1135-50. Epub 2009 Jul 7.
Resistance to therapeutic agents is a major factor in the failure of cancer treatments. In leukemia, the resistant cells remaining in the bone marrow and/or peripheral blood constitute minimal residual disease and are detectable by highly sensitive assays when the patient appears to be in complete remission. Early detection of the expansion of residual cells permits clinical intervention with the aim of reversing the proliferation of resistant leukemic cells. Therefore, accurate and precise measurement of minimal residual disease can greatly enhance optimization of oncology patients' clinical management. This notion is supported by a large body of data among chronic myeloid leukemia patients, but minimal residual disease detection and monitoring is increasingly applied to other types of leukemia, and is starting to be a factor in decision-making for some therapeutic trials in childhood acute lymphoblastic leukemia. Here, from the solid ground of minimal residual disease detection in chronic myeloid leukemia, the current state of the art and development of molecular techniques in other leukemias and the growing field of multiparameter flow cytometry are reviewed in two separate parts reporting on the respective advances, advantages and pitfalls of these emerging methods.

Standardization of flow cytometry in myelodysplastic syndromes: report from the first European LeukemiaNet working conference on flow cytometry in myelodysplastic syndromes
Haematologica. 2009 Aug;94(8):1124-34. Epub 2009 Jun 22.
Abstract: The myelodysplastic syndromes are a group of clonal hematopoietic stem cell diseases characterized by cytopenia(s), dysplasia in one or more cell lineages and increased risk of evolution to acute myeloid leukemia (AML). Recent advances in immunophenotyping of hematopoietic progenitor and maturing cells in dysplastic bone marrow point to a useful role for multiparameter flow cytometry (FCM) in the diagnosis and prognostication of myelodysplastic syndromes. In March 2008, representatives from 18 European institutes participated in a European LeukemiaNet (ELN) workshop held in Amsterdam as a first step towards standardization of FCM in myelodysplastic syndromes. Consensus was reached regarding standard methods for cell sampling, handling and processing. The group also defined minimal combinations of antibodies to analyze aberrant immunophenotypes and thus dysplasia. Examples are altered numbers of CD34(+) precursors, aberrant expression of markers on myeloblasts, maturing myeloid cells, monocytes or erythroid precursors and the expression of lineage infidelity markers. When applied in practice, aberrant FCM patterns correlate well with morphology, the subclassification of myelodysplastic syndromes, and prognostic scoring systems. However, the group also concluded that despite strong evidence for an impact of FCM in myelodysplastic syndromes, further (prospective) validation of markers and immunophenotypic patterns are required against control patient groups as well as further standardization in multi-center studies. Standardization of FCM in myelodysplastic syndromes may thus contribute to improved diagnosis and prognostication of myelodysplastic syndromes in the future.

Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRA-positive chronic eosinophilic leukemia
Blood. 2007 Jun 1;109(11):4635-40. Epub 2007 Feb 13.
The FIP1L1-PDGFRA fusion gene is a recurrent molecular lesion in eosinophilia-associated myeloproliferative disorders, predicting a favorable response to imatinib mesylate. To investigate its prevalence, 376 patients with persistent unexplained hypereosinophilia were screened by the United Kingdom reference laboratory, revealing 40 positive cases (11%). To determine response kinetics following imatinib, real-time quantitative-polymerase chain reaction (RQ-PCR) assays were developed and evaluated in samples accrued from across the European LeukemiaNet. The FIP1L1-PDGFRA fusion transcript was detected at a sensitivity of 1 in 10(5) in serial dilution of the EOL-1 cell line. Normalized FIP1L1-PDGFRA transcript levels in patient samples prior to imatinib varied by almost 3 logs. Serial monitoring was undertaken in patients with a high level of FIP1L1-PDGFRA expression prior to initiation of imatinib (100 mg/d-400 mg/d). Overall, 11 of 11 evaluable patients achieved at least a 3-log reduction in FIP1L1-PDGFRA fusion transcripts relative to the pretreatment level within 12 months, with achievement of molecular remission in 9 of 11 (assay sensitivities 1 in 10(3)-10(5)). In 2 patients, withdrawal of imatinib was followed by a rapid rise in FIP1L1-PDGFRA transcript levels. Overall, these data are consistent with the exquisite sensitivity of the FIP1L1-PDGFRalpha fusion to imatinib, as compared with BCR-ABL, and underline the importance of RQ-PCR monitoring to guide management using molecularly targeted therapies.

Four- and five-color flow cytometry analysis of leukocyte differentiation pathways in normal bone marrow: a reference document based on a systematic approach by the GTLLF and GEIL
Cytometry B Clin Cytom. 2010 Jan;78(1):4-10.
BACKGROUND: The development of multiparameter flow cytometry (FCM) and increasingly sophisticated analysis software has considerably improved the exploration of hematological disorders. These tools have been widely applied in leukaemias, lymphomas, and myelodysplasias, yet with very heterogeneous approaches. Consequently, there is no extensive reference document reporting on the characteristics of normal human bone marrow (BM) in multiparameter FCM. Here, we report a reference analysis procedure using relevant antibody combinations in normal human BM. METHODS: A first panel of 23 antibodies, constructed after literature review, was tested in four-color combinations (including CD45 in each) on 30 samples of BM. After evaluation of the data, a second set of 22 antibodies was further applied to another 35 BM samples. All list-modes from the 65 bone marrow samples were reviewed collectively. A systematised protocol for data analysis was established including biparametric representations and color codes for the three major lineages and undifferentiated cells. RESULTS: This strategy has allowed to obtain a reference atlas of relevant patterns of differentiation antigens expression in normal human BM that is available within the European LeukemiaNet. This manuscript describes how this atlas was constructed. CONCLUSIONS: Both the strategy and atlas could prove very useful as a reference of normality, for the determination of leukemia-associated immunophenotypic patterns, analysis of myelodysplasia and, ultimately, investigation of minimal residual disease in the BM.

Detection and molecular monitoring of FIP1L1-PDGFRA-positive disease by analysis of patient-specific genomic DNA fusion junctions
Leukemia. 2009 Feb;23(2):332-9. Epub 2008 Nov 6.
To evaluate current detection methods for FIP1L1-PDGFRA in hypereosinophilic syndrome (HES), we developed a means to rapidly amplify genomic break points. We screened 202 cases and detected genomic junctions in all samples previously identified as RT-PCR positive (n=43). Genomic fusions were amplified by single step PCR in all cases whereas only 22 (51%) were single step RT-PCR positive. Importantly, FIP1L1-PDGFRA was detected in two cases that initially tested negative by RT-PCR or fluorescence in situ hybridization. Absolute quantitation of the fusion by real-time PCR from genomic DNA (gDNA) using patient-specific primer/probe combinations at presentation (n=13) revealed a 40-fold variation between patients (range, 0.027-1.1 FIP1L1-PDGFRA copies/haploid genome). In follow up samples, quantitative analysis of gDNA gave 1-2 log greater sensitivity than RQ-PCR of cDNA. Minimal residual disease assessment using gDNA showed that 11 of 13 patients achieved complete molecular response to imatinib within a median of 9 months (range, 3-17) of starting treatment, with a sensitivity of detection of up to 1 in 10(5). One case relapsed with an acquired D842V mutation. We conclude that detection of FIP1L1-PDGFRA from gDNA is a useful adjunct to standard diagnostic procedures and enables more sensitive follow up of positive cases after treatment.

An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase
Br J Haematol. 2008 Sep;142(5):802-7.
Gene expression profiling has the potential to enhance current methods for the diagnosis of haematological malignancies. Here, we present data on 204 analyses from an international standardization programme that was conducted in 11 laboratories as a prephase to the Microarray Innovations in LEukemia (MILE) study. Each laboratory prepared two cell line samples, together with three replicate leukaemia patient lysates in two distinct stages: (i) a 5-d course of protocol training, and (ii) independent proficiency testing. Unsupervised, supervised, and r(2) correlation analyses demonstrated that microarray analysis can be performed with remarkably high intra-laboratory reproducibility and with comparable quality and reliability.

Consensus guidelines for microarray gene expression analyses in leukemia from three European leukemia networks
Leukemia. 2006 Aug;20(8):1385-92. Epub 2006 Jun 8.
A plethora of studies have documented that gene expression profiling using DNA microarrays for various types of hematological malignancies provides novel information, which may have diagnostic and prognostic implications. However, to successfully use microarrays for this purpose, the quality and reproducibility of the whole procedure need to be guaranteed. Critical steps of the method are handling, processing and storage of the leukemic sample, purification of tumor cells (or lack thereof), RNA extraction methods, quality control of RNA, labeling techniques, hybridization, washing, scanning, spot filtering, normalization and initial interpretation, and finally the biostatistical analysis. These items have been extensively discussed and evaluated in different multi-center quality rounds within the three networks, that is, I-BFM-SG, the German Competence Network 'Acute and Chronic Leukemias' and the European LeukemiaNet. Based on the exchange of knowledge and experience between the three networks over the last few years, we have formulated guidelines for performing microarray experiments in leukemia. We confine ourselves to leukemias, but many of these requirements also apply to lymphomas or other clinical samples, including solid tumors.

Diagnostic criteria for hematopoietic stem cell transplant-associated microangiopathy: results of a consensus process by an International Working Group
Haematologica. 2007 Jan;92(1):95-100.
BACKGROUND AND OBJECTIVES: There are no widely accepted criteria for the definition of hematopoietic stem cell transplant -associated microangiopathy (TAM). An International Working Group was formed to develop a consensus formulation of criteria for diagnosing clinically significant TAM. DESIGN AND METHODS: The participants proposed a list of candidate criteria, selected those considered necessary, and ranked those considered optional to identify a core set of criteria. Three obligatory criteria and four optional criteria that ranked highest formed a core set. In an appropriateness panel process, the participants scored the diagnosis of 16 patient profiles as appropriate or not appropriate for TAM. Using the experts' ratings on the patient profiles as a gold standard, the sensitivity and specificity of 24 candidate definitions of the disorder developed from the core set of criteria were evaluated. A nominal group technique was used to facilitate consensus formation. The definition of TAM with the highest score formed the final PROPOSAL. RESULTS: The Working Group proposes that the diagnosis of TAM requires fulfilment of all of the following criteria: (i) >4% schistocytes in blood; (ii) de novo, prolonged or progressive thrombocytopenia (platelet count <50 x 109/L or 50% or greater reduction from previous counts); (iii) sudden and persistent increase in lactate dehydrogenase concentration; (iv) decrease in hemoglobin concentration or increased transfusion requirement; and (v) decrease in serum haptoglobin. The sensitivity and specificity of this definition exceed 80%. INTERPRETATION AND CONCLUSIONS: The Working Group recommends that the presented criteria of TAM be adopted in clinical use, especially in scientific trials.

Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference
Blood. 2009 May 14;113(20):4829-33. Epub 2009 Mar 10
Abstract: European experts were convened to develop a definition of response to treatment in polycythemia vera (PV) and essential thrombocythemia (ET). Clinicohematologic (CH), molecular, and histologic response categories were selected. In ET, CH complete response (CR) was: platelet count less than or equal to 400 x 10(9)/L, no disease-related symptoms, normal spleen size, and white blood cell count less than or equal to 10 x 10(9)/L. Platelet count less than or equal to 600 x 10(9)/L or a decrease greater than 50% was partial response (PR). In PV, CH-CR was: hematocrit less than 45% without phlebotomy, platelet count less than or equal to 400 x 10(9)/L, white blood cell count less than or equal to 10 x 10(9)/L, and no disease-related symptoms. A hematocrit less than 45% without phlebotomy or response in 3 or more of the other criteria was defined as PR. In both ET and in PV, molecular CR was a reduction of any molecular abnormality to undetectable levels. Molecular PR was defined as a reduction more than or equal to 50% in patients with less than 50% mutant allele burden, or a reduction more than or equal to 25% in patients with more than 50% mutant allele burden. Bone marrow histologic response in ET was judged on megakaryocyte hyperplasia while on cellularity and reticulin fibrosis in PV. The combined use of these response definitions should help standardize the design and reporting of clinical studies.

 

Print this Document   Sitemap   Contact  
Onkodin - Atlas of hematology

ONKODIN Image Bank - Image Database for Hematological Cytology and Case Reports

More ...
EUTOS
EUTOS for CML is a unique collaboration between the European LeukemiaNet and Novartis Oncology in Europe More ...


 
top